Artificial diamonds and the snowflake chamber, pt. 2


Artificial diamonds, we read in Wired, can be "created in a chamber that mimics geologic conditions" – they are manufactured, in other words, inside surrogate earths.
This chamber of geological mimicry is really "an 8,000-pound machine that use[s] hydraulics and electricity to focus increasing amounts of pressure and heat on the core of a sphere." Such hydraulic pressure recreates "conditions 100 miles below Earth's surface, where diamonds form. Put a sliver of diamond in the core, inject some carbon, and voilà, a larger diamond will grow around the sliver."
All of this is done in a "30,000-square-foot factory, located in an industrial park outside Sarasota, Florida." Here, "a roomful of Russian-designed machines spit[s] out 3-carat roughs 24 hours a day, seven days a week."
The warehouse is run by a company called Gemesis. Its owner jokes that, add another warehouse or two, and soon he'll have himself "a proper diamond mine."


[Image: two yellow diamonds by Gemesis. The diamonds are apparently undetectable as manmade except by the most expensive machinery De Beers can throw at them.]


[Image: the inner crystallography of a diamond – looking almost as if "Black Square" by Kazimir Malevich hit the bottle and went to Kinko's with some time to kill:]



But Gemesis does not have the only – in fact, does not have the best – method for producing artificial diamonds. Apollo Diamond, based in Boston – in "a suburban strip mall occupied by a fitness gym and a graphic design company" – uses a process called chemical vapor deposition, or CVD. CVD "has been used for more than a decade to cover relatively large surfaces with microscopic diamond crystals. The technique transforms carbon into a plasma, which then precipitates onto a substrate as diamond."
The diamond precipitates, forming "when a plasma cloud rains carbon onto diamond wafers" – but perhaps rain is not the appropriate analogy here.
Using CVD, "diamonds could conceivably be grown in large bricks" – kicking off a whole new realm of architectural possibilities that the Wired article does not otherwise describe: a new diamond-walled Notre-Dame of constant refraction and transparent vaults, precision-cut into spires that would put Gaudí to shame.
But it's the precipitation that interests me here, especially in the context of snow: "To grow single-crystal diamond using chemical vapor deposition, you must first divine the exact combination of temperature, gas composition, and pressure – a 'sweet spot' that results in the formation of a single crystal. Otherwise, innumerable small diamond crystals will rain down" – or snow down, as the case may be.


An artificial earth-chamber that snows diamonds.


Perhaps, then, BLDGBLOG needs to update its proposal for a snowflake incubation city, and reimagine it as a city that constantly snows diamonds, thousands upon thousands of diamonds, snowing down from the roofs of cathedrals, filling inland canals, blowing through elevator shafts, falling quietly behind glass walls with a light rhythmic tap and rush.

Comments are moderated.

If it's not spam, it will appear here shortly!


Anonymous Engagement Rings said...

Very cool! Reminds me of the snowflake images of Wilson 'Snowflake' Bentley( http://snowflakebentley.com/snowflakes.htm )

November 05, 2005 11:59 PM  

Post a Comment